Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biochem Biophys Res Commun ; 533(3): 553-558, 2020 Dec 10.
Article in English | MEDLINE | ID: covidwho-778470

ABSTRACT

Coronaviruses infect many animals, including humans, due to interspecies transmission. Three of the known human coronaviruses: MERS, SARS-CoV-1, and SARS-CoV-2, the pathogen for the COVID-19 pandemic, cause severe disease. Improved methods to predict host specificity of coronaviruses will be valuable for identifying and controlling future outbreaks. The coronavirus S protein plays a key role in host specificity by attaching the virus to receptors on the cell membrane. We analyzed 1238 spike sequences for their host specificity. Spike sequences readily segregate in t-SNE embeddings into clusters of similar hosts and/or virus species. Machine learning with SVM, Logistic Regression, Decision Tree, Random Forest gave high average accuracies, F1 scores, sensitivities and specificities of 0.95-0.99. Importantly, sites identified by Decision Tree correspond to protein regions with known biological importance. These results demonstrate that spike sequences alone can be used to predict host specificity.


Subject(s)
Computational Biology/methods , Coronavirus/pathogenicity , Host Specificity , Machine Learning , Spike Glycoprotein, Coronavirus , Animals , Humans , Spike Glycoprotein, Coronavirus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL